TB(1B) Ch. 11 Angles related to lines Conventional Questions

1. [11-12 Final Exam #6]

In **Figure 2**, $\angle B = 124^{\circ}$, $\angle C = 4x$, reflex $\angle E = 236^{\circ}$, AB // CD and BC // DE.

- (a) Find the value of x.
- (2 marks)

(b) Prove *CD* // *EF*.

(4 marks)

Figure 2

2. [12-13 Standardised Test 2, #5]

In **Figure 3**, $\angle AOB = 58^{\circ}$, $\angle BOC = x + 42^{\circ}$, $\angle DOE = 2x$, $\angle AOE = 2\angle DOE$ and

$$\angle DOE = \frac{1}{3} \angle COD$$
.

(a) Find the value of x.

- (3 marks)
- **(b)** Is *BOD* a straight line? Explain briefly.
- (2 marks)

Figure 3

3. [12-13 Standardised Test 2, #6]

In **Figure 4**, ABC is a triangle and AG intersects BC at D. $\angle B = 35^{\circ}$ and $\angle BDG = 85^{\circ}$. E and F are points on AB and AC respectively such that $DE \perp AB$ and $DF \perp AC$. If DF bisects $\angle ADC$,

(a) find the values of x, y and z.

- (5 marks)
- **(b)** write down the type of $\triangle ABC$ according to the sizes of its angles.

(1 mark)

Figure 4

4. [12-13 Final Exam, #6]

In **Figure 3**, *AEB*, *DEF* and *CBF* are straight lines. *AB* // *DC*, $\angle ADE = 50^{\circ}$, $\angle AED = 60^{\circ}$, $\angle EBF = 70^{\circ}$ and $\angle BDE = \angle BDC$.

- (a) Prove that AD // FC.
- (2 marks)

(b) Find x.

(2 marks)

5. [13-14 Standardised Test 2, #5]

In **Figure 4**, AB // DE, $\angle BAC = 56^{\circ}$ and $\angle ACB = \angle BDE = 36^{\circ}$. Find $\angle CBD$.

(3 marks)

Figure 4

6. [13-14 Standardised Test 2, #6]

In **Figure 5**, ABC, FGH, BDF, CEG and ADEH are straight lines. $\angle ADB = \angle GEH = 24^{\circ}$ and

 $\angle ACG = \angle BFH = 110^{\circ}$.

- (a) Prove that BF // CG.
- (2 marks)
- **(b)** Prove that AC // FH.
- (2 marks)

7. [13-14 Standardised Test 2, #8]

In **Figure 7**, ABCDEFGHI is a 9-sided polygon.

ABGHI is a pentagon, BCDEFG is a hexagon and BG // IH.

(a) Find x and y.

- (4 marks)
- **(b)** Prove that $BC /\!/ GF$.
- (2 marks)

Figure 7

8. [13-14 Final Exam, #7]

Figure 3 shows a hexagon ABCDEF.

(a) Find a.

- (2 marks)
- **(b)** Is *FE* parallel to *BC*? Explain your answer. (3 marks)

Figure 3

9. [14-15 Standardized Test #7]

In **Figure 4**, $\angle ABC = 35^{\circ}$ and $\angle GDE = 145^{\circ}$. CDE and FDG are straight lines and AB//CE.

Prove that BC//FG. (a)

- (3 marks)
- **(b)** If $\triangle DCG$ is an obtuse-angled triangle, find a set of possible value for

 $\angle GCD$ and $\angle CGD$. Explain your answer.

(2 marks)

Figure 4

10. [14-15 Final Exam #5]

In **Figure 2**, ABCD is a quadrilateral with AB //DC. DC is produced to E. AC and BD intersect at F. It is given that $\angle ABF = a + 4^{\circ}$, $\angle ADF = a$, $\angle DFC = 2a + 16^{\circ}$, $\angle FCB = 46^{\circ}$ and $\angle BCE = 64^{\circ}$.

(a) Find *a*.

- (2 marks)
- **(b)** Prove that AD // BC.
- (2 marks)

Figure 2

11. [14-15 Final Exam #6]

In **Figure 3**, *ABIJK*, *BCD*, *CEF* and *GHI* are straight lines. Find *a* and *b*.

(4 marks)

12. [15-16 Final Exam, #8]

An *n*-sided convex polygon is given.

(a) Express the sum of interior angles of the polygon in terms of *n*.

(1 mark)

(b) It is known that one of the interior angles of this polygon is x and the sum of all the other interior angles is 1000° .

(i) Write down the sum of interior angles of this polygon in terms of x.

(1 mark)

(ii) Show that $x = 180^{\circ} n - 1360^{\circ}$.

(1 mark)

(iii) It is known that $x < 180^{\circ}$. Write down the value of n.

(1 mark)